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ABSTRACT
The concept of Time To Test Transform (TTT) is well known for its applications
in different fields of study such as reliability analysis, econometrics, stochastic mod-
eling and ordering distributions. In this article, we estimate the TTT for the Lo-
max function based on censored sample. The Bayes estimates are evaluated under
squared error, entropy, precautionary loss functions. The empirical evaluation of the
estimates is done using a simulation study.
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1. Introduction

In reliability and life testing, the important determinants are testing time and cost
of sample units. To achieve reduction in testing time and cost of sample units,
different censored sampling procedures are suggested. In the statistical literature,
many researchers have concentrated on providing estimators of different parameters
and parametric functions useful in reliability studies using different life distribu-
tions and under various censored sampling schemes. In general, censored sampling
mechanism is to observe the complete life time of few experimental units out of n units.

The TTT-plot an empirical and scale invariant plot based on failure data, and the
corresponding asymptotic curve, named the scaled TTT-Transform were introduced
by [1] and used for model identification purposes. Since then these tools have proven to
be very useful in several applications in reliability. The applications of this transform
in econometrics and its close relationship with the Lorenz curve have been studied by
many authors including [3], [4], [6], [5], among others.

Let F (x) denote the life distribution of a certain type of units, i.e. F (t) is the
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probability that the unit will fail before time 1. Furthermore, let
−
F (x) be the

corresponding survival function, i.e. the probability that the unit survives beyond x.
The mean is denoted by µ and is calculated by integrating the survival function,
i.e.

µ =

∞∫
0

−
F (x)dx

Although many of the results are true under more general conditions, we assume for
simplicity that F (t) is continuous and strictly increasing. This means for instance
that the usual inverse function F−1(x) exists. The total time on test (TTT) defined

as T (t) =
F−1(t)∫

0

−
F (x)dx for 0 ≤ t ≤ 1.

With these notations in mind we can define the scaled TTT-transform as

φ(t) =
1

µ

F−1(t)∫
0

−
F (x)dx for 0 ≤ t ≤ 1 (1.1)

−
F = 1− F, µ =

∞∫
0

−
F (x)dx and F−y = infx : F (x) ≥ y for 0 ≤ y ≤ 1

Lomax distribution has been used as an alternative to the exponential, gamma
and Weibull distributions for heavy tailed data by [2]. The Lomax distribution is
considered as an important model of lifetime models since it belongs to the family
of decreasing failure rate. Lomax distribution is one of the well known distributions
that is very useful in many fields such as engineering and reliability and life testing.
However, this distribution does not provide great flexibility in modeling data. Thus,
Lomax distribution can be generalized by presenting additional parameters such as
shape, scale or location in the distribution and then observing the characteristics of
the new distribution. The probability density function of Lomax distribution is given
by

f(x : θ, λ) =
θ

λ

(
1 +

x

λ

)−(θ+1)
x, θ, λ > 0 (1.2)

where θ and λ are shape and scale parameters respectively.

For the above model,the TTT simplifies to

φ(t) = 1− (1− t)
θ−1

θ (1.3)
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After this brief introduction, we derive the likelihood function under the right
censored model for Lomax distribution in Section 2. The Bayesian estimation
of the TTT-transform of the Lomax distribution is discussed in Section 3. Finally
in Section 4, we assess the performance of the estimates using Monte Carlo simulation.

2. Likelihood function

Consider a right censored sample x(1), x(2), . . . , x(n−s) observations from a Lomax
distribution. The likelihood function under the right censored model for Lomax
distribution is given by

L(x
−
|θ, λ) = (1− Fn−s)s

n−s∏
i=1

f(xi)

=
[
1 +

xn−s
λ

]−sθ n−s∏
i=1

θ

λ

(
1 +

xi
λ

)(θ+1)
(2.1)

3. Bayesian Estimation

Bayesian methods have produced some remarkably efficient solutions to difficult
estimation problems. Researchers often choose the techniques on practical grounds,
rather than in adherence to their philosophical basis. Indeed, for some, the Bayesian
estimator is merely an algorithm. The Bayesian inference requires appropriate choice
of prior(s) for the parameter(s). From the Bayesian viewpoint, there is no clear cut
way from which one can conclude that one prior is better than other. Here we suggest
uniform prior, exponential prior and gamma prior for the Bayesian estimation when
the scale parameter is known and the joint prior for the scale parameter is unknown.

3.1. When λ is known

3.1.1. Bayesian estimation of TTT under uniform prior by using different loss
functions

The uniform prior for θ is given by,

g(θ) ∝ 1, θ > 0 (3.1)

Combining the prior distribution (3.1) and the likelihood function (2.1), the posterior
density of θ is derived as follows
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f(θ|x
−

) ∝ θn−sexp{−θq} (3.2)

where q = s log
(

1 +
xn−s
λ

)
+

n−s∑
i=1

log
(

1 +
xi
λ

)
(3.3)

Let φ be a parameter and replacing θ in (3.2) in terms of φ using (1.3), we get the
posterior density of the TTT as

f(φ|x
−

) =
Rn−s+2
φ (1− φ)−1exp[−Rφq]

O1(t, 0)
(3.4)

where O1(t, d) =

t∫
0

φdR− φn−s+2(1− φ)−1exp[−Rφq]dφ (3.5)

In order to select the ‘best’ estimator, a loss function must be specified and is used to
represent a penalty associated with each of the possible estimates. Squared error loss
function (SELF) is a commonly used loss function and the Bayes estimator under the
above loss function is given by

θ̂CS = E(θ|x
−

)

The Bayes estimator of TTT under Squared error loss function is given by

φ̂CS1 = E(φ|x) =
O1(1)

O1(0)
(3.6)

The entropy loss function (ELF) is a special case of general entropy loss function and
the Bayes estimate under ELF is given by

θ̂CE = [E(θ−1|x
−

)]
−1

The Bayes estimator of TTT under Entropy Loss Function is given by

φ̂CE1 = [E(φ−1|x
−

]−1 =
O1(1)

O1(−1)
(3.7)

54



Asian Journal of Statistical Sciences Sowbhagya S Prabhua and E. S. Jeevanandb

The precautionary loss function (PLF) is an asymmetrical loss function and the Bayes
estimate under PLF is given by

θ̂CP =
√
E(θ2|x

−
)

The Bayes estimator of TTT under Precautionary Loss function is given by

φ̂CP1 =
√
E(φ2|x

−
) =

[
O1(2)

O1(0)

] 1

2

(3.8)

3.1.2. Bayesian estimation of TTT under exponential prior by using different loss
functions

In this section, we gives the Bayes estimators of TTT using exponential prior under
different loss functions.

The exponential prior for θ is given by,

g(θ) ∝ exp{−θω}, θ, ω > 0 (3.9)

Combining the prior distribution (3.8) and the likelihood function (2.1), the posterior
density of θ is derived as follows

f(θ|x
−

) ∝ θn−sexp{−θb} (3.10)

where b = ω + q (3.11)

and q is given in (3.3).

Replacing θ in (3.10) in terms of φ using (1.3), we get the posterior density of the
TTT as

f(φ|x
−

) =
Rn−s+2
φ (1− φ)−1exp[−Rφb]

O2(t, 0)
(3.12)

where O2(t, d) =

t∫
0

φdRn−s+2
φ (1− φ)−1exp[−Rφb]dφ (3.13)

and Rφ is given in (3.5).
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The Bayes estimator of TTT under Squared error loss function is given by

φ̂CS2 = E(φ|x) =
O2(1)

O2(0)
(3.14)

The Bayes estimator of TTT under Entropy Loss Function is given by

φ̂CE2 = [E(φ−1|x
−

)]−1 =
O2(0)

O2(−1)
(3.15)

The Bayes estimator of TTT under Precautionary Loss function is given by

φ̂CP2 =
√
E(φ2|x

−
) =

[
O2(2)

O2(0)

] 1

2

(3.16)

3.1.3. Bayesian estimation of TTT under gamma prior by using different loss
functions

In this section, we gives the Bayes estimators of TTT using gamma prior under
different loss functions.

The gamma prior for θ is given by,

g(θ) ∝ θp−1exp{−θτ}, θ, p, τ > 0 (3.17)

Combining the prior distribution (3.17) and the likelihood function (2.1), the posterior
density of θ is derived as follows

f(θ|x
−

) ∝ θL−1exp{−θg} (3.18)

where L = n− s+ p, g = τ + q and q is given in (3.3) (3.19)

Replacing θ in (3.18) in terms of φ using (1.3), we get the posterior density of the
TTT as

f(φ|x
−

) =
RL+1
φ (1− φ)−1exp [−Rφg]

O3(t, 0)
(3.20)
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where O3(t, d) =

t∫
0

φdRL+1
φ (1− φ)−1exp [−Rφg] dφ (3.21)

and Rφ is given in (3.5).

The Bayes estimator of TTT under Squared error loss function is given by

φ̂CS3 = E(φ|x) =
O3(1)

O3(0)
(3.22)

The Bayes estimator of TTT under Entropy Loss Function is given by

φ̂CE3 = [E(φ−1|x
−

)]−1 =
O3(0)

O3(−1)
(3.23)

The Bayes estimator of TTT under Precautionary Loss function is given by

φ̂CP3 =
√
E(φ2|x

−
) =

[
O3(2)

O3(0)

] 1

2

(3.24)

3.2. When λ is unknown

In this section, we gives the Bayes estimators of TTT using the joint prior under
different loss functions.

The joint prior for θ is given by,

g(θ, λ) ∝ θp−1exp{−θτ}
λ

, θ, p, λ > 0 (3.25)

Combining the prior distribution (3.25) and the likelihood function (2.1), the posterior
density of θ is derived as follows

f(θ|x
−

) ∝ θL−1
∞∫
0

exp{−(θg + e)}dλ (3.26)

where e =

n−s∑
i=1

log
(

1 +
xi
λ

)
+ (n− s)log(λ) and L, g are given in (3.19) (3.27)
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Replacing θ in (3.26) in terms of φ by that (1.3), we get the posterior density of the
TTT as

f(φ|x
−

) =

RL+1
φ (1− φ)−1

∞∫
0

exp{−(θg + e)}dλ

O4(t, 0)
(3.28)

where O4(t, d) =

t∫
0

∞∫
0

φdRL+1
φ (1− φ)−1exp[−(Rφg + e)]dλdφ (3.29)

and Rφ is given in (3.5).
0.1cm] The Bayes estimator of TTT under Squared error loss function is given by

φ̂CS4 = E(φ|x) =
O4(1)

O4(0)
(3.30)

The Bayes estimator of TTT under Entropy Loss Function is given by

φ̂CE4 = [E(φ−1|x
−

)]−1 =
O4(0)

O4(−1)
(3.31)

The Bayes estimator of TTT under Precautionary Loss function is given by

φ̂CP4 =
√
E(φ2|x

−
) =

[
O4(2)

O4(0)

] 1

2

(3.32)

It may be noted that the Bayes estimator of TTT under three loss functions are
not reducible in closed form. Hence, we seek suitable numerical integration to obtain
estimates.

4. Simulation Study

In the absence of real data, we study the performance of the estimators obtained so
far using simulated data. With different values of the parameters of the model, right
censored samples of different sizes are generated and we compare the bias and the
mean square errors of TTT. Integration is carried out using Cubature-package of R
for the evaluation of estimates. A Monte Carlo simulation has been carried out for
establishing the performance of the estimates. In the first step, we generate samples
of sizes 25, 50 and 75 with censoring of 10%. The above measures are calculated
empirically using 1,000 Monte Carlo runs for different choices of the parameters. The
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bias and MSEs of the different estimators are given in table.

Table 1
True value of TTT when t=0.3

θ 2.5 3 3.5 4 4.5
trueφ 0.19266 0.21163 0.22490 0.23471 0.24226
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Table 2
Bias and MSEs (in parentheses) of the estimates of TTT under uniform prior

n θ φ̂CS1 φ̂CE1 φ̂CP1

2.5 0.12180 0.13250 0.12580
(0.00780) (0.00870) (0.01452)

3 0.13740 0.12897 0.11568
(0.54620) (0.04251) (0.01254)

25 3.5 0.13651 0.12808 0.11479
(0.23560) (0.36250) (0.01410)

4 0.14530 0.13687 0.12358
(0.00020) (0.00120) (0.00320)

4.5 0.14986 0.14143 0.12814
(0.00630) (0.00240) (0.00560)

2.5 0.12071 0.13141 0.12471
(0.00889) (0.00979) (0.01561)

3 0.13634 0.12791 0.11462
(0.02430) (0.03192) (0.05450)

10 3.5 0.12772 0.11929 0.10600
(0.23580) (0.36370) (0.01730)

4 0.14441 0.13598 0.12269
(0.00160) (0.00960) (0.02560)

4.5 0.14530 0.13687 0.12358
(0.26010) (0.39562) (0.07180)

2.5 0.11985 0.13055 0.12385
(0.03319) (0.04171) (0.07011)

3 0.13548 0.12705 0.11376
(0.02590) (0.04152) (0.08010)

75 3.5 0.12686 0.11843 0.10514
(0.02450) (0.03312) (0.05770)

4 0.14355 0.13512 0.12183
(0.00074) (0.00874) (0.02474)

4.5 0.14444 0.13601 0.12272
(0.01280) (0.07680) (0.20480)
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Table 3
Bias and MSEs (in parentheses) of the estimates of TTT under exponential prior

n, s θ φ̂CS2 φ̂CE2 φ̂CP2

2.5 0.13780 0.11270 0.11568
(0.02546) (0.02545) (0.12520)

3 0.13456 0.13245 0.13589
(0.25860) (0.68450) (0.00254)

25 3.5 0.13370 0.13159 0.13503
(0.00250) (0.00020) (0.01240)

4 0.13456 0.13245 0.13579
(0.00040) (0.00240) (0.00030)

4.5 0.12258 0.11245 0.14865
(0.00960) (0.00870) (0.00420)

2.5 0.13671 0.11161 0.11459
(0.02655) (0.02654) (0.12629)

3 0.13350 0.13139 0.13483
(0.07637) (0.17610) (0.27560)

10 3.5 0.12491 0.12280 0.12624
(0.00290) (0.00260) (0.01270)

4 0.13367 0.13156 0.13490
(0.00320) (0.01920) (0.00240)

4.5 0.11802 0.10789 0.14409
(0.07927) (0.00054) (0.28830)

2.5 0.13585 0.11075 0.11373
(0.10292) (0.20264) (0.00504)

3 0.13264 0.13053 0.13397
(0.07957) (0.19530) (0.27800)

75 3.5 0.12406 0.12195 0.12539
(0.07677) (0.17850) (0.27590)

4 0.13281 0.13070 0.13404
(0.00234) (0.01834) (0.00154)

4.5 0.11716 0.10703 0.14323
(0.02560) (0.15360) (0.01920)

61



Asian Journal of Statistical Sciences Sowbhagya S Prabhua and E. S. Jeevanandb

Table 4
Bias and MSEs (in parentheses) of the estimates of TTT under gamma prior

n, s θ φ̂CS3 φ̂CE3 φ̂CP3

2.5 0.13540 0.11250 0.11841)
(0.02520) (0.05100) (0.00050

3 0.13890 0.13740 0.12546
(0.06400) (0.06020) (0.00547)

25 3.5 0.13804 0.13654 0.12460
(0.00021) (0.23650) (0.00140)

4 0.13880 0.17451 0.11587
(0.04010) (0.00256) (0.00244)

4.5 0.13854 0.12856 0.12856
(0.00650) (0.00450) (0.00080)

2.5 0.13431 0.11141 0.11731
(0.02629) (0.05209) (0.00159)

3 0.13784 0.13634 0.12440
(0.10140) (0.10250) (0.00100)

10 3.5 0.12925 0.12775 0.11581
(0.04031) (0.01245) (0.00380)

4 0.13794 0.17365 0.11501
(0.32080) (0.02048) (0.01920)

4.5 0.13398 0.12451 0.12770
(0.14171) (0.06050) (0.00480)

2.5 0.13345 0.11055 0.11645
(0.12769) (0.15459) (0.00259)

3 0.13698 0.13548 0.12354
(0.42220) (0.12298) (0.02027)

75 3.5 0.12840 0.12690 0.11496
(0.14150) (0.10506) (0.00340)

4 0.13709 0.17280 0.11416
(0.31994) (0.01962) (0.01834)

4.5 0.13312 0.12365 0.12685
(0.00045) (0.16384) (0.15360)
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Table 5
Bias and MSEs (in parentheses) of the estimates of TTT when λ is unknown

n, s θ φ̂CS4 φ̂CE4 φ̂CP4

2.5 0.09991 0.11454 0.10395
(0.06242) (0.06965) (0.11622)

3 0.09062 0.10094 0.08994
(0.01702) (0.10205) (0.27205)

25 3.5 0.11402 0.12999 0.11139
(0.00792) (0.01208) (0.03126)

4 0.10692 0.11597 0.09692
(0.45245) (0.50465) (0.84222)

4.5 0.08285 0.09174 0.07391
(0.05822) (0.02795) (0.05934)

2.5 0.09832 0.10904 0.10234
(0.06235) (0.06955) (0.11615)

3 0.08999 0.09904 0.08634
(0.01608) (0.10106) (0.27105)

10 3.5 0.11317 0.12295 0.11045
(0.00787) (0.01194) (0.03111)

4 0.10527 0.11415 0.09581
(0.45144) (0.50365) (0.84125)

4.5 0.08195 0.09081 0.07257
(0.05819) (0.02781) (0.05928)

2.5 0.09785 0.10790 0.10207
(0.06132) (0.06850) (0.11518)

3 0.08860 0.09845 0.08597
(0.01500) (0.10004) (0.27008)

75 3.5 0.11111 0.12144 0.10949
(0.00684) (0.01090) (0.03017)

4 0.10425 0.11315 0.09485
(0.45144) (0.50365) (0.84125)

4.5 0.08041 0.08912 0.07247
(0.06221) (0.06965) (0.11628)

In this paper, Bayesian method is used for estimating the TTT transform of Lomax
distribution based on right censored samples. It has been noticed, from the tables,
that the bias decreases as the sample size increases.
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